Abstract

Flexible supercapacitors have received considerable interest owing to their potential application in wearable electronics. Designing subtle hybridization of active materials and constructing smart electrode architectures are effective strategies for developing high-performance flexible supercapacitors. Herein, a hierarchically hybrid electrode is engineered by integrating nanoneedle-like structural NiCo2O4 and NiMn layered double hydroxide (NiMn-LDH) composite on highly conductive carbon cloth (CC). This architecture can endow abundant active sites, rapid electron collection pathways and efficient ion transport channels. The resultant hybrid electrode delivers high areal capacitance of 4010.4 mF cm−2, excellent cyclic stability and good rate performance. Furthermore, by pairing with an activated carbon (AC)/CC anode, a flexible solid-state asymmetric supercapacitor (ASC) is assembled, which exhibits the high areal energy/power density of 0.78 mWh cm−2/40.4 mW cm−2 and superior capacitive stability at bending deformation. Meanwhile, the assembled ASC possesses outstanding cycling stability with 97.7% capacitance retention after 10,000 cycles. This work presents the effects of rational design of hybrid electrode with high electrochemical properties and flexibility, holding great potential for flexible energy storages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.