Abstract
In this paper, based on the idea of profit and loss modification, we present the iterative non-uniform B-spline curve and surface to settle a key problem in computer aided geometric design and reverse engineering, that is, constructing the curve (surface) fitting (interpolating) a given ordered point set without solving a linear system. We start with a piece of initial non-uniform B-spline curve (surface) which takes the given point set as its control point set. Then by adjusting its control points gradually with iterative formula, we can get a group of non-uniform B-spline curves (surfaces) with gradually higher precision. In this paper, using modern matrix theory, we strictly prove that the limit curve (surface) of the iteration interpolates the given point set. The non-uniform B-spline curves (surfaces) generated with the iteration have many advantages, such as satisfying the NURBS standard, having explicit expression, gaining locality, and convexity preserving, etc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.