Abstract

Spinel Li4Ti5O12 (LTO) holds great potential used as lithium ion battery(LIB) anode material for various hybrid, plug-in, and pure electrical vehicle applications. However, the low intrinsic conductivity and much underused capacity pose serious obstacles in practice for its wider and deeper utilization. Here we demonstrate a facile approach by which an LTO/Si/cyclized-polyacrylonitrile (PAN) inorganic/polymer composite is designed and implemented in attempt to tackle both challenges. Our results show that an optimal Si amount is needed in the composite so as to fully promote underused LTO capacity in a stable state while cyclized PAN not only improves conductivity, reaction kinetics and charge transfer resistance of the electrode through its turbostratic transition, but to much extent acts as a resilient binder to offset volumetric expansion caused by Si. The optimized composite exhibits admirable capacity and cycling performance during long-term operation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.