Abstract

N-doped carbon materials are known for their high conductivity, rich N content, and high adsorption activity. When combined with Fe2O3 to form nanocomposites, they can improve the conductivity of Fe2O3 and cause significant changes in the electrochemical sensing interface with the influence of their unique electronic structure. In this work, N-doped carbon nanocomposites (Fe2O3@NCNPs-x) modified with Fe2O3 nanoparticles (Fe2O3 NPs) were synthesized by a simple emulsion polymerization method and carbonized under Ar at a high temperature. X-ray photoelectron spectroscopy indicated that compared with undoped Fe2O3 NPs, the π bond of Fe2O3@NCNPs-1.5 was negatively charged due to the lone pair of electrons near the N atom, acting as an electron donor that enhanced the interaction with HMIs and electron transport, therefore generating more active sites on the surface of Fe2O3@NCNPs-1.5. The obtained Fe2+/Fe3+ ratio was about two times higher than that of undoped Fe2O3 NPs (Fe2O3@NCNPs-1.5: Fe2+/Fe3+ = 1.24; Fe2O3 NPs: Fe2+/Fe3+ = 0.61). The surface oxygen vacancy (OV) concentration reached the maximum level (Fe2O3@NCNPs-1.5: OVs/O1s = 41.7%; Fe2O3 NPs: OVs/O1s = 22%). Fe2O3@NCNPs-1.5/GCE also showed enhanced electrochemical performance for detecting Pb2+ and Cd2+, with a limit of detection (LOD, S/N = 3) of 4.92 and 18.79 nM, respectively. Electrochemical adsorption tests suggested that Fe2O3@NCNPs-1.5/GCE had the strongest adsorption capacity for Pb2+ and Cd2+ in comparison with other modified electrodes, suggesting that different N contents led to different absorbability for heavy metal ions (HMIs). Therefore, when the metal oxide nanoparticles are loaded on compatible carriers, the jointly constructed nanocomposites can be used as the active materials for efficiently detecting HMIs, providing a new concept for designing highly active electrochemical sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.