Abstract

AbstractTransition‐metal based layered doubled hydroxides (LDH) as oxygen evolution reaction (OER) catalysts have attracted tremendous research interests. However, it is still a great challenge to strengthen the intrinsic activity of LDH. Herein, hollow CoNiFe‐LDH nanocages with amorphous/crystal phase and element gradient distribution are successfully constructed through the coordinated etching and precipitation process. Utilizing the difference of solubility product constants among transition metal cations to generate the gradient distribution effect in nanocages is proposed for the first time. The distinctive element gradient distribution in hollow CoNiFe‐LDH nanocages results in the composition gradient, which can provide the heterojunctions effect and play an important role in regulating morphology and electronic structure. Density functional theory calculations disclose that the synergistic effect between elements significantly regulates the electron density and enhances the conductivity. When employed as OER electrocatalysts, it exhibits a very competitive overpotential of 257 mV at 10 mA cm−2 combined with a low Tafel slope of 31.4 mV dec−1. This work represents a promising strategy to fabricate highly efficient OER catalysts for electrochemical water splitting and provides new opportunities to understand the promotion mechanism of intrinsic activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.