Abstract
A characteristic sample for a language $L$ and a learning algorithm $\textbf{L}$ is a finite sample of words $T_L$ labeled by their membership in $L$ such that for any sample $T \supseteq T_L$ consistent with $L$, on input $T$ the learning algorithm $\textbf{L}$ returns a hypothesis equivalent to $L$. Which omega automata have characteristic sets of polynomial size, and can these sets be constructed in polynomial time? We address these questions here. In brief, non-deterministic omega automata of any of the common types, in particular B\"uchi, do not have characteristic samples of polynomial size. For deterministic omega automata that are isomorphic to their right congruence automata, the fully informative languages, polynomial time algorithms for constructing characteristic samples and learning from them are given. The algorithms for constructing characteristic sets in polynomial time for the different omega automata (of types B\"uchi, coB\"uchi, parity, Rabin, Street, or Muller), require deterministic polynomial time algorithms for (1) equivalence of the respective omega automata, and (2) testing membership of the language of the automaton in the informative classes, which we provide.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.