Abstract
Optimizing the dosage of coagulant is a time-consuming process, and real-time evaluation of floc settling velocity can quickly predict the coagulation effect and optimize the dosage. This study used a convolutional neural network (CNN) model to analyze the accuracy of floc image recognition of settling velocity. Python-OpenCV was employed to develop a program that segments individual flocs and detects their settling velocity to constructing a dataset of floc images and settling velocity. The results showed that the accuracy of determining the settling velocity of flocs solely based on their particle size was 88%, indicating that the floc structure is complex and a single parameter is not sufficient to accurately identify settling velocity. The results of the CNN analysis indicated that using a relatively simple Lenet5 structure can quickly achieve an accuracy of 88%, while using a Resnet18 structure can achieve recognition accuracy of over 90%. These findings suggest that machine learning techniques applied to floc images can effectively evaluate floc settling velocity, providing theoretical guidance for optimizing coagulant dosage and regulating coagulation processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.