Abstract

Developing green and highly efficient water disinfection technique is of great importance to public health. Herein, a near-infrared (NIR) light-triggerable thermo-sensitive defective molybdenum oxide-nitrogen doped carbon (MoO3-x/NCNs) composite was fabricated and applied to water disinfection. With the synergy of photodynamic and photothermal effects, the MoO3-x/NCNs achieve a rapid and effective inactivation of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) as compared to photocatalytic treatment or thermal catalytic alone. Particularly, MONC-3 with optimal ratio can completely inactivate 7.6 log of E. coli and S. aureus within 60 min and 100 min, respectively. The MONC-3 hybrid exhibits efficient charge separation and migration ability due to the formation of Schottky heterojunction, resulting in the highly enhanced O2− (11.34 × 10−10 M) generation activity. Meanwhile, excellent NIR light absorption and photothermal conversion efficiency (52.6%) of MONC-3 can generate local high temperature to promote photocatalytic reaction rate and destruct the bacterial integrity. The monitoring of cell damage process confirmed the irreversible death of bacteria. Based on density functional theory (DFT) calculation, the antibacterial mechanism and Schottky effect were clarified. This work provides new insights for constructing a water disinfection strategy based on plasma-induced photothermal synergy catalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.