Abstract

To take the pronounced issue of recombination among photogenerated electrons and holes in the photocatalytic reaction, we report a WC/CaIn2S4 Schottky heterojunction photocatalyst using a straightforward one-step hydrothermal method and applied it for the enhanced hydrogen evolution reaction in photocatalysis. A stable Schottky energy barrier can be formed by closely connecting the metal-like WC with the n-type semiconductor CaIn2S4, accelerating the migration of photogenerated carriers. Meanwhile, WC can lower the overpotential for hydrogen evolution, leading to a notable enhancement in the photocatalytic hydrogen evolution rate. The hydrogen evolution rate of the optimal WC/CaIn2S4 Schottky heterojunction photocatalyst WCIS1 : 1 was approximately 2.3 times higher than that of Pt-loaded photocatalyst CIS+Pt. This study delves into the application significance of the Schottky heterojunction principle in the photocatalytic hydrogen production reaction. Furthermore, this study provides a novel approach to replacing noble metal Pt with metal-like WC in the field of photocatalytic hydrogen evolution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.