Abstract
Background and objectivesRecent studies have shown that speech analysis provides relevant information to support the diagnosis and monitoring of patients suffering from Parkinson's disease (PD). In this work a methodology is proposed to create articulatory maps based on articulatory and phonological information such that allow a clear and interpretable visualization of the results. Materials and methodsA total of 100 speakers were recorded while reading a text with 36 words that includes all phonemes of the Colombian Spanish. Phonological features are extracted with two toolkits: PhonVoc and Phonet. Forced alignment is used to obtained the time-stamps per phoneme. Support vector machines and random forests are used to classify between PD patients and non-symptomatic subjects. ResultsAccuracies of up to 90% are observed when the phonological class «Vowels» is considered and also accuracies above 80% are found for «Nasals», «Voiceless ficatives» and «Voiced Stop». Articulatory maps are created based on Gaussian mixture models with the aim to enable the interpretation of results. ConclusionsThe proposed methodology is suitable for the automatic detection of PD and also to assess possible articulatory deficits in the production of specific phonological classes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.