Abstract

The effect of the nuclear symmetry energy slope on the non-radial oscillation f-modes in neutron stars is calculated and discussed. Based on a conservative range of the symmetry energy slope constrained by the experiment and theoretical analysis, a constraint on the frequency and damping time of the gravitational radiation from the f-mode in neutron star is obtained. It is also shown that a higher symmetry energy slope corresponds with a smaller frequency and a longer damping time. Meanwhile, a new set of parameters is given to present the universal properties of the scaled frequency and damping time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.