Abstract
SUMMARYVertical fluid-escape structures observed in seismic reflection data represent an important class of potentially active fluid flow pathways. An understanding of the mechanism of fluid flow in these types of structures is needed to assess the risk of natural gas venting from potential subsurface carbon dioxide storage operations. The Scanner Pockmark Complex is a 22 m deep, 900 × 450 m seabed depression in the North Sea, which actively vents methane, and is underlain by a seismic chimney structure with horizontal dimensions of ∼300 × 600 m. Gas accumulation is evidenced by the presence of bright reflectors at the top of this seismic chimney, at a depth of ∼50 m below the seabed. Here, we analyse seismic anisotropy in these shallow sediments using shear wave splitting observed on ocean bottom seismographs (OBS). Anisotropy varies spatially, with a strength of ∼1–4 per cent, on several OBS located in and around the pockmark complex. By correlating these observations with calculated subsurface P- and S-wave velocities, we show that there is anisotropy present throughout the sediments through which the chimney passes, which are interpreted as relating to syn- and post-depositional glaciomarine processes. However, within the chimney itself the orientation of the fast direction is different to that outside the chimney and the degree of anisotropy is lower. We attribute this difference as indicating that the anisotropy observed within the chimney is associated with the formation and continued presence of the gas migration system, which overprints the background depositional anisotropy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.