Abstract

In this article, optimization of the McPherson suspension mechanism of a real car named Arisan is considered. In this regard, a model based on a real-life suspension system is proposed with the least simplification. This model is built in the ADAMS/View software based on the actual size of the suspension mechanism of Arisan. Moreover, the user-written code of the genetic algorithm in C is added as a plug-in to the ADAMS/View software in a completely innovative way to optimize the suspension system. 16 parameters of the suspension system are selected as design variables to wholly handle its geometry. The value of all design variables is optimally found by GA to minimize the variation of the camber angle as an objective function. Comparison of the obtained optimum suspension by the proposed method with the actual suspension system of Arisan shows a 23.5% improvement in the camber variation angle. It is worth noting that the proposed method does not require a mathematical model of the suspension system that leads to some simplifications such as linearization and non-friction joints. The proposed method can be used for modeling and optimization of other nonlinear dynamical systems such as robotics and building structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.