Abstract

AbstractEffects of hard constraints in the stability of model‐perdictive control (MPC) are reviewed. Assuming a fixed active set, the optimal solution can be expressed in a general state‐feedback closed form, which corresponds to a piecewise linear controller for the linear model case. Changes in the original unconstrained solution by the active constraints and other effects related to the loss of degrees of freedom are depicted in this analysis. In addition to modifications in the unconstrained feedback gain, we show that the presence of active output constraints can introduce extra feedback terms in the predictive controller. This can lead to instability of the constrained closed‐loop system with certain active sets, independent of the choice of tuning parameters. To cope with these problems and extend the constraint handling capabilities of MPC, we introduce the consideration of soft constraints. We compare the use of the l2‐(quadratic), l1‐(exact), and l∞‐norm penalty formulations. The analysis reveals a strong similarity between the control laws, which allows a direct extrapolation of the unconstrained tuning guidelines to the constrained case. In particular, the exact penalty treatment has identical stability characteristics to the correspondent unconstrained case and therefore seems well suited for general soft constraint handling, even with nonlinear models. These extensions are included in the previously developed Newton control framework, allowing the use of the approach within a consistent framework for both linear and nonlinear process models, increasing the scope of applications of the method. Process examples illustrate the capabilities of the proposed approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.