Abstract

The timing of whole-genome duplication (WGD) events is crucial to understanding their role in evolution and underpins many hypotheses linking WGD to increased diversity and complexity. As such, means of estimating the timing of the WGD events relative to their macroevolutionary outcomes are of considerable importance. Molecular clock methods facilitate direct estimation of the absolute timing of WGD events, integrating information on the rate of sequence evolution between species while accommodating the uncertainty inherent to the fossil record. We present an explanation of the best practice for constructing fossil calibrations and estimating the age of WGD events via molecular clock methods in the program MCMCtree, with an example dataset based on a well-characterized WGD event within the flowering dogwoods (Cornus). The approach presented herein allows for the estimation of the age of WGD events and subsequent speciation events, allowing the relationship between WGD and the macroevolutionary outcomes to be explored. In our example, we show that in the case of flowering dogwoods, the WGD event long predates the end-Cretaceous mass extinction and that the two events may be independent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.