Abstract

We present an analysis of the observed broad iron line feature and putative warm absorber in the long 2001 XMM-Newton observation of the Seyfert-1.2 galaxy MCG-6-30-15. The new kerrdisk model we have designed for simulating line emission from accretion disk systems allows black hole spin to be a free parameter in the fit, enabling the user to formally constrain the angular momentum of a black hole, among other physical parameters of the system. In an important extension of previous work, we derive constraints on the black hole spin in MCG-6-30-15 using a self-consistent model for X-ray reflection from the surface of the accretion disk while simultaneously accounting for absorption by dusty photoionized material along the line of sight (the warm absorber). Even including these complications, the XMM-Newton/EPIC-pn data require extreme relativistic broadening of the X-ray reflection spectrum; assuming no emission from within the radius of marginal stability, we derive a formal constraint on the dimensionless black hole spin parameter of a > 0.987 at 90% confidence. The principal unmodeled effect that can significantly reduce the inferred black hole spin is powerful emission from within the radius of marginal stability. Although significant theoretical developments are required to fully understand this region, we argue that the need for a rapidly spinning black hole is robust to physically plausible levels of emission from within the radius of marginal stability. In particular, we show that a non-rotating black hole is strongly ruled out.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.