Abstract

Kohonen's learning vector quantization (LVQ) is an efficient neural network based technique for pattern recognition. The performance of the method depends on proper selection of the learning parameters. Over-training may cause a degradation in recognition rate of the final classifier. In this paper we introduce constrained learning vector quantization (CLVQ). In this method the updated coefficients in each iteration are accepted only if the recognition performance of the classifier after updating is not decreased for the training samples compared with that before updating, a constraint widely used in many prototype editing procedures to simplify and optimize a nearest neighbor classifier (NNC). An efficient computer algorithm is developed to implement this constraint. The method is verified with experimental results. It is shown that CLVQ outperforms and may even require much less training time than LVQ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.