Abstract
In the hot strip rolling process, the performance of a monitoring system for automatic gauge control (MN-AGC) is influenced greatly by the model mismatch which is caused by the variation of model parameters values. A constrained dynamic matrix control (CDMC) strategy that includes a prediction model, rolling optimization, and feedback correction was used in the MN-AGC. First, the conventional Smith prediction-based control strategy for the MN-AGC was analyzed. Second, the performance index function and optimal control of the CDMC strategy were determined. Finally, simulations and industrial experiments were conducted. The results showed that both control strategies provided good control performance. When model mismatch occurred, the Smith predictor-based MN-AGC resulted in significant overshoot or even oscillations but the control performance of the CDMC-based MN-AGC was not influenced by changes in the model parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.