Abstract

AbstractA new three-dimensional cone-cap limit-state surface (LSS) model is proposed for cross-anisotropic, saturated, cohesionless, or cohesive remolded soils in consideration of anisotropic yielding and kinematic hardening. Matsuoka-Nakai failure criterion equations are adopted as the cone yield functions, and a new ellipse cap associated with Matsuoka-Nakai cone is developed. The anisotropic vertical and horizontal yield stresses (σaL′ and σrL′) are used as hardening variables to describe evolution of the fabric anisotropy. A smart kinematic hardening law is suggested without any addition of material parameters. With a nonassociated flow rule and because of the cone-cap connection on a constant p′ critical state plane, a smooth transition of a plastic strain increment vector at the cone-cap intersection points is ensured for the convenience of numerical calculation. There are very few parameters involved in the proposed model, and they are the same as those in the Cam-clay model, except one parameter f...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.