Abstract
The mechanical behavior of 430 stainless steel and pre-oxidized FeCrAlY open-cell foam materials of various densities was evaluated in compression at temperatures between 450°C and 600°C in an environment containing hydrogen sulfide and water vapor. Both materials showed negligible corrosion due to the gaseous atmosphere for up to 168 h. The monotonic stress–strain response of these materials was found to be dependent on both the strain rate and their density, and the 430 stainless steel foam materials exhibited less stress relaxation than the FeCrAlY for similar experimental conditions. Using the results from multiple hardening-relaxation and monotonic tests, an empirical constitutive equation was derived to predict the stress–strain behavior of FeCrAlY foams as a function of temperature, and strain rate. These results are discussed in the context of using these materials in a black liquor gasifier to accommodate the chemical expansion of the refractory liner resulting from its reaction with the soda in the black liquor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.