Abstract
Recent clinical studies have revealed that a somatic mutation in MAP2K1, causing constitutive activation of MEK1 in osteogenic cells, occurs in melorheostotic bone disease in humans. We have generated a mouse model which expresses an activated form of MEK1 (MEK1DD) specifically in osteoprogenitors postnatally. The skeletal phenotype of these mice recapitulates many features of melorheostosis observed in humans, including extra-cortical bone formation, abundant osteoid formation, decreased mineral density, and increased porosity. Paradoxically, in both humans and mice, MEK1 activation in osteoprogenitors results in bone that is not structurally compromised, but is hardened and stronger, which would not be predicted based on tissue and matrix properties. Thus, a specific activating mutation in MEK1, expressed only by osteoprogenitors postnatally, can have a significant impact on bone strength through complex alterations in whole bone geometry, bone micro-structure, and bone matrix.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.