Abstract

The inherent probabilistic nature of Large Language Models (LLMs) introduces an element of unpredictability, raising concerns about potential discrepancies in their output. This paper presents a novel approach designed to generate correct and optimal robotic task plans for diverse real-world demands and scenarios. LLMs have been used to generate task plans, but they are unreliable and may contain wrong, questionable, or high-cost steps. The proposed approach uses LLM to generate a number of task plans as trees and amalgamates them into a graph by removing questionable paths. Then an optimal task tree can be retrieved to circumvent questionable and high-cost nodes, thereby improving planning accuracy and execution efficiency. The approach is further improved by incorporating a large knowledge network. Leveraging GPT-4 further, the high-level task plan is converted into a low-level Planning Domain Definition Language (PDDL) plan executable by a robot. Evaluation results highlight the superior accuracy and efficiency of our approach compared to previous methodologies in the field of task planning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.