Abstract
The histogram estimator of a discrete probability mass function often exhibits undesirable properties related to zero probability estimation both within the observed range of counts and outside into the tails of the distribution. To circumvent this, we formulate a novel second-order discrete kernel smoother based on the recently developed mean-parametrized Conway–Maxwell–Poisson distribution which allows for both over- and under-dispersion. Two automated bandwidth selection approaches, one based on a simple minimization of the Kullback–Leibler divergence and another based on a more computationally demanding cross-validation criterion, are introduced. Both methods exhibit excellent small and large sample performance. Computational results on simulated datasets from a range of target distributions illustrate the flexibility and accuracy of the proposed method compared to existing smoothed and unsmoothed estimators. The method is applied to the modelling of somite counts in earthworms, and the number of development days of insect pests on the Hura tree.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.