Abstract

We analyze the $\alpha$-$^{12}$C inelastic scattering to the $0^+_2$ state of $^{12}$C, the Hoyle state, in a fully microscopic framework. With no free adjustable parameter, the inelastic cross sections at forward angles are well reproduced by the microscopic reaction calculation using the transition density of $^{12}$C obtained by the resonating group method and the nucleon-nucleon $g$ matrix interaction developed by the Melbourne group. It is thus shown that the monopole transition strength obtained by the structural calculation is consistent with that extracted from the reaction observable, suggesting no missing monopole strength of the Hoyle state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.