Abstract
Reliable uncertainty quantification (UQ) in machine learning (ML) regression tasks is becoming the focus of many studies in materials and chemical science. It is now well understood that average calibration is insufficient, and most studies implement additional methods testing the conditional calibration with respect to uncertainty, i.e. consistency. Consistency is assessed mostly by so-called reliability diagrams. There exists however another way beyond average calibration, which is conditional calibration with respect to input features, i.e. adaptivity. In practice, adaptivity is the main concern of the final users of a ML-UQ method, seeking for the reliability of predictions and uncertainties for any point in features space. This article aims to show that consistency and adaptivity are complementary validation targets, and that a good consistency does not imply a good adaptivity. Adapted validation methods are proposed and illustrated on a representative example.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.