Abstract
The main goal of this paper is to suggest an improved higher order refined theory for analysing perfectly bonded stacked composite laminates with the usual lamination configurations. The analysis incorporates continuous flexural and in-plane displacements at the interfaces. Furthermore, the transverse shear stress is continuous and constrained with the Lagrange multiplier technique by introducing 14 new unknown variables that are expressed in terms of the interfacial strain energy, which is assuming to be continuous throughout the thickness of the laminate. To determine the newly introduced flexural and in-plane unknown variables, the total potential energy is minimised using variational calculus. The numerical results are compared with those from existing reliable published papers. In general, the proposed approach is sufficient for analysing laminate structures with the required accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transactions of the Canadian Society for Mechanical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.