Abstract

We previously found that ATP synthases localize to male-specific sensory cilia and control the ciliary response by regulating polycystin signalling in Caenorhabditis elegans. Herein, we discovered that the ciliary localization of ATP synthase is evolutionarily conserved in mammals. We showed that the ATP synthase subunit F1β is colocalized with the cilia marker acetylated α-tubulin in both mammalian renal epithelial cells (MDCK) and normal mouse cholangiocytes (NMCs). Treatment with ATP synthase inhibitor oligomycin impaired ciliogenesis in MDCK cells, and F1β was co-immunoprecipitated with PKD2 in mammalian cells. Our study provides evidence for the evolutionarily conserved localization of ATP synthase in cilia from worm to mammals. Defects in ATP synthase can lead to ciliary dysfunction, which may be a potential mechanism of polycystic kidney disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.