Abstract

We discuss the difficulties that background independent theories based on quantum geometry encounter in deriving general relativity as the low energy limit. We follow a geometrogenesis scenario of a phase transition from a pre-geometric theory to a geometric phase which suggests that a first step towards the low energy limit is searching for the effective collective excitations that will characterize it. Using the correspondence between the pre-geometric background independent theory and a quantum information processor, we are able to use the method of noiseless subsystems to extract such coherent collective excitations. We illustrate this in the case of locally evolving graphs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.