Abstract

High-order harmonic generation stands as a unique nonlinear optical up-conversion process, mediated by a laser-driven electron recollision mechanism, which has been shown to conserve energy, linear momentum, and spin and orbital angular momentum. Here, we present theoretical simulations that demonstrate that this process also conserves a mixture of the latter, the torus-knot angular momentum J_{γ}, by producing high-order harmonics with driving pulses that are invariant under coordinated rotations. We demonstrate that the charge J_{γ} of the emitted harmonics scales linearly with the harmonic order, and that this conservation law is imprinted onto the polarization distribution of the emitted spiral of attosecond pulses. We also demonstrate how the nonperturbative physics of high-order harmonic generation affect the torus-knot angular momentum of the harmonics, and we show that this configuration harnesses the spin selection rules to channel the full yield of each harmonic into a single mode of controllable orbital angular momentum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.