Abstract
We find and classify all first-order conservation laws in the Stroh formalism. All possible non-semisimple degeneracies are considered. The laws are found to depend on three arbitrary analytic functions. In some instances, there is an āextraā law which is quadratic in ā u \nabla u . Separable and inseparable canonical forms for the stored energy function are given for each type of degeneracy and they are used to compute the conservation laws. The existence of a real Stroh eigenvector is found to be a necessary and sufficient condition for separability. The laws themselves are stated in terms of the Stroh eigenvectors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.