Abstract

The Three Gorges Dam on the Yangtze River in China has created a major reservoir in which the water level fluctuates annually by about 30 m, generating a drawdown zone of up to 350 km(2) in summer. Since construction of the dam, there has been scientific and public interest in how to use the drawdown zone resources in environmentally sustainable ways. To this end, and with government support, an international conference was held in Chongqing Municipality (China) in October 2011 on the subject of conservation and ecofriendly utilization of wetlands in the Three Gorges Reservoir. The conference proceedings were subsequently published in the Journal of Chongqing Normal University. The proceedings reports are reviewed here in the context of other relevant literature. The proceedings included papers on ecology, ecodesign and ecological engineering, erosion control, plant production and carbon sequestration, phytoremediation of pollution, hydrosystem management, and others. Several of the reports derive from experimental work conducted at a research field station on the Three Gorges Reservoir situated in Kaixian County, Chongqing Municipality. Plant communities in the drawdown zone are declining in diversity and evolving. Experimental plantings of flood-tolerant edible hydrophytes in a dike-pond system reveal their potential to provide economic returns for farmers, and flooding-tolerant trees, such as cypresses, also show promising results for stabilizing soils in the drawdown zone. Flood-tolerant natural plant communities vary strongly with depth and their composition provides useful indicators for revegetation strategies. In the region surrounding the reservoir, remnant natural broad-leaved evergreen forests are most effective in sequestering carbon, and within the drawdown zone, carbon is mostly stored below ground. There is strong interest in the potential of aquatic plants for removal of pollutants, notably N and P, from the reservoir water by means of floating beds. Other examples of applying ecodesign and ecological engineering strategies for restoration and management of rivers and lakes are also given. Scientific studies have provided valuable advice for ecofriendly utilization of the reservoir drawdown zone and further studies of the evolving condition of the reservoir can be expected to pay additional practical dividends.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.