Abstract
Hand-in-hand work of physics and evolution delivered protein universe with diversity of forms, sizes, and functions. Pervasiveness and advantageous traits of allostery made it an important component of the protein function regulation, calling for thorough investigation of its structural determinants and evolution. Learning directly from nature, we explored here allosteric communication in several major folds and repeat proteins, including α/β and β-barrels, β-propellers, Ig-like fold, ankyrin and α/β leucine-rich repeat proteins, which provide structural platforms for many different enzymatic and signalling functions. We obtained a picture of conserved allosteric communication characteristic in different fold types, modifications of the structure-driven signalling patterns via sequence-determined divergence to specific functions, as well as emergence and potential diversification of allosteric regulation in multi-domain proteins and oligomeric assemblies. Our observations will be instrumental in facilitating the engineering and de novo design of proteins with allosterically regulated functions, including development of therapeutic biologics. In particular, results described here may guide the identification of the optimal structural platforms (e.g. fold type, size, and oligomerization states) and the types of diversifications/perturbations, such as mutations, effector binding, and order–disorder transition. The tunable allosteric linkage across distant regions can be used as a pivotal component in the design/engineering of modular biological systems beyond the traditional scaffolding function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.