Abstract

AGAMOUS/SEEDSTICK (AG/STK) subfamily genes play crucial roles in the reproductive development of plants. However, most of our current knowledge of AG/STK subfamily genes is restricted to core eudicots and grasses, and the knowledge of ancestral exon-intron structures, expression patterns, protein-protein interaction patterns and functions of AG/STK subfamily genes remains unclear. To determine these, we isolated AG/STK subfamily genes (MawuAG1, MawuAG2 and MawuSTK) from a woody basal angiosperm Magnolia wufengensis (Magnoliaceae). MawuSTK arose from the gene duplication event occurring before the diversification of extant angiosperms, and MawuAG1 and MawuAG2 may result from a gene duplication event occurring before the divergence of Magnoliaceae and Lauraceae. Gene duplication led to apparent diversification in their expression and interaction patterns. It revealed that expression in both stamens and carpels likely represents the ancestral expression profiles of AG lineage genes, and expression of STK-like genes in stamens may have been lost soon after the appearance of the STK lineage. Moreover, AG/STK subfamily proteins may have immediately established interactions with the SEPALLATA (SEP) subfamily proteins following the emergence of the SEP subfamily; however, their interactions with the APETALA1/FRUITFULL subfamily proteins or themselves differ from those found in monocots and basal and core eudicots. MawuAG1 plays highly conserved roles in the determinacy of stamen, carpel and ovule identity, while gene duplication contributed to the functional diversification of MawuAG2 and MawuSTK. In addition, we investigated the evolutionary history of exon-intron structural changes of the AG/STK subfamily, and a novel splice-acceptor mode (GUU-AU) and the convergent evolution of N-terminal extension in the euAG and PLE subclades were revealed for the first time. These results further advance our understanding of ancestral AG/STK subfamily genes in terms of phylogeny, exon-intron structures, expression and interaction patterns, and functions, and provide strong evidence for the significance of gene duplication in the expansion and evolution of the AG/STK subfamily.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.