Abstract

In the present work, consequences of air exposure on the surface composition of one of the most reactive lithium-ion battery components, the lithiated graphite, was investigated using 280–835eV soft X-ray photoelectron spectroscopy (SOXPES) as well as 1486.7eV X-ray photoelectron spectroscopy (XPS) (∼2 and ∼10nm probing depth, respectively). Different depth regions of the solid electrolyte interphase (SEI) of graphite cycled vs. LiFePO4 were thereby examined. Furthermore, the air sensitivity of samples subject to four different combinations of pre-treatments (washed/unwashed and exposed to air before or after vacuum treatment) was explored. The samples showed important changes after exposure to air, which were found to be largely dependent on sample pre-treatment. Changes after exposure of unwashed samples exposed before vacuum treatment were attributed to reactions involving volatile species. On washed, air exposed samples, as well as unwashed samples exposed after vacuum treatment, effects attributed to lithium hydroxide formation in the innermost SEI were observed and suggested to be associated with partial delithiation of the surface region of the lithiated graphite electrode. Moreover, effects that can be attributed to LiPF6 decomposition were observed. However, these effects were less pronounced than those attributed to reactions involving solvent species and the lithiated graphite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.