Abstract

In this paper, a recently proposed SE(3)-constrained extended Kalman filter (EKF) is extended to formulate a strategy for relative orbit estimation in a space-based sensor network. The resulting consensus SE(3)-constrained EKF utilizes space-based sensor fusion and is applied to the problem of spacecraft proximity operations and formation flying. The proposed filter allows for the state (i.e., pose and velocities) estimation of the deputy satellite while accounting for measurement error statistics using the rotation matrix to represent attitude. Via a comparison with a conventional filter in the literature, it is shown that the use of the proposed consensus SE(3)-constrained EKF can improve the convergence performance of the existing filter for satellite formation flying. Moreover, the benefits of faster convergence and consensus speed by using communication networks with more connections are illustrated to show the significance of the proposed sensor fusion strategy in spacecraft proximity operations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.