Abstract

In this paper, the problem of robust consensus for multi-agent systems affected by external disturbances is discussed. A novel consensus control is developed by using a feedback controller based on disturbance rejection and Smith predictor scheme. Specifically, the disturbance rejection performance of the uncertain multi-agent systems is improved according to the estimation of equivalent-input-disturbance and the effect of time delay in the control system is reduced via Smith predictor scheme by shifting the delay outside the feedback loop. Furthermore, by combining Lyapunov theory, matrix inequality techniques and properties of Kronecker product, a robust feedback controller for each agent is designed such that the desired consensus of the uncertain multi-agent systems affected by external disturbances can be ensured. Finally, to illustrate the validity of the designed control scheme, two numerical examples with simulation results are provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.