Abstract

SUMMARYIn this paper, the consensus control problems for multi‐agent systems under double integrator dynamics with time‐varying communication delays are investigated. We assume that the interaction graphs among agents are directed. Two kinds of protocols are considered. One is an absolute damping protocol, and the other is a relative damping protocol. For the first protocol, Lyapunov–Razumikhin functional techniques are used. We derive sufficient conditions that guarantee that all agents asymptotically reach consensus under fixed topology and switching topology, respectively. Moreover, the allowable upper bound for communication delays is given. For the second protocol, Lyapunov–Krasovskii functional techniques are used. Linear matrix inequality (LMI)‐form sufficient conditions are obtained to guarantee the consensus problems to be solved under fixed topology and switching topology, respectively. The allowable upper bound for communication delays is given as well. The feasibilities of the demanded LMIs are also discussed. Finally, numerical simulations are provided to illustrate the effectiveness of our theoretical results. Copyright © 2011 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.