Abstract

Based on direct spectroscopic measurements of hole transfer in DNA and quantification of the yield of DNA oxidative damage, consecutive adenine sequences were found to be a good launching site for photosensitizers to inject a hole in DNA, where the following rapid hole transfer between adenines causes a long-lived charge-separated state leading to DNA oxidative damage. According to the results, the essential requisites for an efficient and/or harmful photosensitizer are determined as follows: to be able to oxidize adenine to trigger hole transfer between adenines, and react rapidly with molecular oxygen following its reduction, avoiding charge recombination and making the reaction irreversible. These results will greatly help us to classify photosensitizers harmful to human health, and to design an improved photosensitizer for biochemical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.