Abstract

AbstractPSR J0337+1715 is a millisecond radio pulsar in a hierarchical stellar triple system with two white dwarfs. This system is a unique and excellent laboratory in which to test the strong equivalence principle (SEP) of general relativity. An initial SEP-violation test was performed using direct 3-body numerical integration of the orbit in order to model the more than 25000 pulse times of arrival (TOAs) from three radio telescopes: Arecibo, Green Bank and Westerbork. In this work I present our efforts to quantify the effects of systematics in the TOAs and timing residuals, which limit the precision of an SEP test. In particular, we apply Fourier-based techniques to the timing residuals in order to isolate the effects of systematics that can masquerade as an SEP violation.

Highlights

  • Einstein’s strong equivalence principle (SEP) is a fundamental tenet of general relativity (GR): it postulates that gravitational interactions do not depend on the gravitational binding energy of self-gravitating bodies, and that gravitational mass (MG ) equals inertial mass (Mi), even for objects with strong gravity

  • In this work I present our efforts to quantify the effects of systematics in the TOAs

  • which limit the precision of an SEP test

Read more

Summary

Introduction

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.