Abstract

BackgroundRecent work has shown that the gap junction protein connexin43 (Cx43) is upregulated in cells of the joint during osteoarthritis (OA). Here we examined if the OA-associated increase in Cx43 expression impacts the function of synovial fibroblasts by contributing to the production of catabolic and inflammatory factors that exacerbate joint destruction in arthritic disease.MethodsUsing rabbit and human synovial fibroblast cell lines, we examined the effects of Cx43 overexpression and Cx43 siRNA-mediated knockdown on the gene expression of OA-associated matrix metalloproteinases (MMP1 and MMP13), aggrecanases (ADAMTS4 and ADAMTS5), and inflammatory factors (IL1, IL6 and PTGS2) by quantitative real time RT-PCR. We examined collagenase activity in conditioned media of cultured synovial cells following Cx43 overexpression. Lastly, we assessed the interplay between Cx43 and the NFκB cascade by western blotting and gene expression studies.ResultsIncreasing Cx43 expression enhanced the gene expression of MMP1, MMP13, ADAMTS4, ADAMTS5, IL1, IL6 and PTGS2 and increased the secretion of collagenases into conditioned media of cultured synovial fibroblasts. Conversely, knockdown of Cx43 decreased expression of many of these catabolic and inflammatory genes. Modulation of Cx43 expression altered the phosphorylation of the NFκB subunit, p65, and inhibition of NFκB with chemical inhibitors blocked the effects of increased Cx43 expression on the mRNA levels of a subset of these catabolic and inflammatory genes.ConclusionsIncreasing or decreasing Cx43 expression alone was sufficient to alter the levels of catabolic and inflammatory genes expressed by synovial cells. The NFκB cascade mediated the effect of Cx43 on the expression of a subset of these OA-associated genes. As such, Cx43 may be involved in joint pathology during OA, and targeting Cx43 expression or function may be a viable therapeutic strategy to attenuate the catabolic and inflammatory environment of the joint during OA.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2474-15-425) contains supplementary material, which is available to authorized users.

Highlights

  • Recent work has shown that the gap junction protein connexin43 (Cx43) is upregulated in cells of the joint during osteoarthritis (OA)

  • Quantitative real time Reverse transcription-polymerase chain reaction (RT-PCR) showed that transient transfection with rat Cx43 in rabbit synovial fibroblasts (HIG82 cells) was sufficient to induce the gene expression of several catabolic factors associated with OA, including the matrix metalloproteinases, MMP1 and MMP13, and the aggrecanases, ADAMTS4 and ADAMTS5, compared to cells transfected with an empty vector (Figure 1A-B)

  • Pharmacologic inhibition of gap junction function with carbenoxolone or heptanol was effective at reducing gene expression and matrix metalloproteinase production in HIG82 cells, but issues of cell viability/cell health in the presence of these inhibitors made interpretation difficult

Read more

Summary

Introduction

Recent work has shown that the gap junction protein connexin (Cx43) is upregulated in cells of the joint during osteoarthritis (OA). We examined if the OA-associated increase in Cx43 expression impacts the function of synovial fibroblasts by contributing to the production of catabolic and inflammatory factors that exacerbate joint destruction in arthritic disease. The physiologic function of the synovial fibroblasts is to produce a synovial fluid rich in hyaluronan and superficial zone protein/lubricin that lubricates the joint to facilitate low friction movement. Synovial cells and articular chondrocytes produce catabolic factors, such as matrix metalloproteinases (e.g., MMP-1 and −13), aggrecanases (e.g., ADAMTS-4 and −5), and pro-inflammatory factors/cytokines (e.g., IL-1, IL-6, TNFα, nitric oxide, prostaglandin E2 (PGE2)) that contribute to joint destruction in OA [2,3,4,5]. Determining the precise contribution and the dynamic interplay between the joint tissue during disease onset and progression is critical to understanding OA and for developing interventions

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.