Abstract

Abstract Connectomes' topological organization can be quantified using graph theory. Here, we investigated brain networks in higher dimensional spaces defined by up to ten graph-theoretic nodal properties. These properties assign a score to nodes, reflecting their meaning in the network. Using 100 healthy unrelated subjects from the Human Connectome Project, we generated various connectomes (structural/functional, binary/weighted). We observed that nodal properties are correlated (i.e., they carry similar information) at whole-brain and subnetwork level. We conducted an exploratory machine learning analysis to test whether high dimensional network information differs between sensory and association areas. Brain regions of sensory and association networks were classified with an 80-86% accuracy in a 10D space. We observed the largest gain in machine learning accuracy going from a 2D to 3D space, with a plateauing accuracy towards 10D space, and nonlinear Gaussian kernels outperformed linear kernels. Finally, we quantified the Euclidean distance between nodes in a 10D graph space. The multidimensional Euclidean distance was highest across subjects in the default mode network (in structural networks) and frontoparietal and temporal lobe areas (in functional networks). To conclude, we propose a new framework for quantifying network features in high-dimensional spaces that may reveal new network properties of the brain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.