Abstract

The purpose of this paper is to investigate the effects of fracture connectivity and length distributions on the electrical formation factor, F, of random fracture network using percolation theory. We assumed that the matrix was homogeneous and low-permeable, but the connectivity and length distributions of fracture system were randomly variable. F of fracture network is analyzed via finite element method. The main result is that: different from the classical percolation “universal” power law for porous-type rocks, F of fracture network obeys a normalized “universal” scaling relation using the length-scale 〈l〉/L (〈l〉 is fracture mean length, and L is the domain size). Our proposed formation factor model, derived from the normalized “universal” scaling relationship, is valid in fracture network with constant fracture length and length distributions, showing that the normalized “universal” scaling law is independent of fracture patterns. The normalized scaling relation is also successfully used to derive the permeability model of 2D random fracture network using the previously published dataset, which obtained better fitting results than before.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.