Abstract

Given a finite hypergraph H = ( V, E) and, for each e ϵ E, a collection of nonempty subsets π e of e, Möbius inversion is used to establish a recursive formula for the number of connected components of the hypergraph H = ( V, ∪ eϵE π e ). As shown elsewhere, this formula is an essential ingredient in the context of a certain divide-and-conquer strategy that allows us to define a dynamical programming scheme solving Steiner's problem for graphs in linear time (however, with a constant depending hyperexponentially on their tree width).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.