Abstract
A stellar spectrum is the finger-print identification of a particular star, the result of the radiation transport through its atmosphere. The physical conditions in the stellar atmosphere, its effective temperature, surface gravity, and the presence and abundance of chemical elements explain the observed features in the stellar spectra, such as the shape of the overall continuum and the presence and strength of particular lines and bands. The derivation of the atmospheric stellar parameters from a representative sample of stellar spectra collected by ground-based and spatial telescopes is essential when a realistic view of the Galaxy and its components is to be obtained. In the last decade, extensive astronomical surveys recording information of large portions of the sky have become a reality since the development of robotic or semi-automated telescopes. The Gaia satellite is one of the key missions of the European Space Agency (ESA) and its launch is planned for 2011. Gaia will carry out the so-called Galaxy Census by extracting precise information on the nature of its main constituents, including the spectra of objects (Wilkinson, 2005). Traditional methods for the extraction of the fundamental atmospheric stellar parameters (effective temperature (Teff), gravity (log G), metallicity ([Fe/H]), and abundance of alpha elements [a/Fe], elements integer multiples of the mass of the helium nucleus) are time-consuming and unapproachable for a massive survey involving 1 billion objects (about 1% of the Galaxy constituents) such as Gaia. This work presents the results of the authors’ study and shows the feasibility of an automated extraction of the previously mentioned stellar atmospheric parameters from near infrared spectra in the wavelength region of the Gaia Radial Velocity Spectrograph (RVS). The authors’ approach is based on a technique that has already been applied to problems of the non-linear parameterization of signals: artificial neural networks. It breaks ground in the consideration of transformed domains (Fourier and Wavelet Transforms) during the preprocessing stage of the spectral signals in order to select the frequency resolution that is best suited for each atmospheric parameter. The authors have also progressed in estimating the noise (SNR) that blurs the signal on the basis of its power spectrum and the application of noise-dependant algorithms of parameterization. This study has provided additional information that allows them to progress in the development of hybrid systems devoted to the automated classification of stellar spectra.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.