Abstract

In this note we show that the sparse estimation technique named Square-Root LASSO (SR-LASSO) is connected to a previously introduced method named SPICE. More concretely we prove that the SR-LASSO with a unit weighting factor is identical to SPICE. Furthermore we show via numerical simulations that the performance of the SR-LASSO changes insignificantly when the weighting factor is varied. SPICE stands for sparse iterative covariance-based estimation and LASSO for least absolute shrinkage and selection operator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.