Abstract

Classical hierarchical image representations and connected filters work on sets of connected components (CC). These approaches can be defective to describe the relations between disjoint objects or partitions of images. In practice, objects can be made of several connected components in images (due to occlusions for example), therefore it can be interesting to be able to take into account the relationship between these components to be able to detect the whole object. In Mathematical Morphology, second-generation connectivity (SGC) and tree-based shape-spaces study this relation between the connected components of an image. However, they have limitations. For this reason, we propose in this paper an extension of the usual shape-space paradigm into what we call a Generalized Shape-Space (GSS). This new paradigm allows us to analyze any graph of connected components hierarchically and to filter them thanks to connected operators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.