Abstract
In this article, we show the existence of conjugations on many smooth simply-connected spin 6-manifolds with free integral cohomology. In a certain class the only condition on X 6 to admit a conjugation with fixed point set M 3 is the obvious one: the existence of a degree-halving ring isomorphism between the $${\mathbb Z_2}$$ -cohomologies of X and M. As a consequence certain 6-manifolds, for which Puppe (J Fixed Point Theory Appl 2(1):85–96, 2007) proved the non-existence of non-trivial orientation-preserving finite group actions, do admit many involutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.