Abstract

Glutathione- S-transferase (GST) activity has been examined in liver cytosol fractions from guinea pigs, mice, control fed rats or rats with pre-neoplastic nodular liver lesions. The levels of activity in unfractionated cytosols have been assayed using the model substrates 1-chloro-2,4-dinitrobenzene (CDNB), 3, 4-dichloronitrobenzene (DCNB) and monobromobimane (mBrB) with reduced glutathione (GSH). The order of activities in the various liver fractions using CDNB as substrate were: mouse > preneoplastic nodular rat > guinea pig >Y control rat and paralleled the capacities of the cytosols to catalyse the formation of aflatoxin B 1-GSH from microsomally-activated aflatoxin B 1 (AFB 1) and GSH. Quantitative differences between the activities of the cytosols using the three model substrates were observed. In the mouse fractionation of GST activity by isoelectric focusing (I.E.F.) on preparative granular gels showed that the most basic component (isoelectric point pH 9.4) with the highest conjugating activity with respect to microsomally-activated AFB 1 did not correspond with the peak of most activity for conjugating CDNB. In the pre-neoplastic nodular rat liver the CDNB conjugating activities of all fractions separated on granular I.E.F. gels, were higher than the corresponding fractions isolated from control rat liver, with particular enhancement of the peak containing the 3:3 isoenzyme. In contrast to control rat liver the 7:7 isoenzyme was detected in pre-neoplastic nodular liver preparations. These isoenzymes (3:3 and 7:7) did not contribute significantly to the enhanced level of AFB 1-GSH formation catalysed by cytosol fractions prepared from pre-neoplastic nodular rat liver. The microsomally-activated AFB 1-conjugating activity of unfractionated rat liver cytosols was increased to a relatively greater extent than CDNB conjugating activity during the induction of pre-neoplastic nodular liver lesions, and the elevated level of the activated AFB 1-conjugating activity was found to be associated with the most basic fraction (isoelectric point pH 9.0). Analytical isoelectric focusing gels using mBrB as substrate demonstrated the presence of a basic GST isoenzyme in the pre-neoplastic nodular rat liver, not detected in preparations from the livers of control rats. The low level of activated AFB 1-conjugating activity present in unfractionated guinea-pig cytosol was found to correspond with the fraction containing the peak of CDNB conjugating activity on preparative isoelectric focusing (isoelectric point pH 7.5). The lack of correlation between the conjugation of model substrates and the conjugation of xenobiotics could be of importance in studies on drug resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.