Abstract

Abstract Ceramic matrix composites (CMCs) show promise as higher temperature capable alternatives to traditional metallic components in gas turbine engine hot gas paths. However, CMC components will still require both internal and external cooling, such as film cooling. The overall cooling effectiveness is determined not only by the design of coolant flow, but also by the conduction through the materiel itself. CMCs have anisotropic thermal conductivity, giving rise to heat flow that differs somewhat relative to what we have come to expect from experience with traditional metallic components. Conjugate heat transfer computational fluid dynamics (CFD) simulations were performed in order to isolate the effect anisotropic thermal conductivity has on a cooling architecture consisting of both internal and external cooling. Results show the specific locations and unique effects of anisotropic thermal conduction on overall effectiveness. Thermal conductivity anisotropy is shown to have a significant effect on the resulting overall effectiveness. As CMCs begin to make their way into gas turbine engines, care must be taken to ensure that anisotropy is characterized properly and considered in the thermal analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.