Abstract

Soft-core programmable processors on field-programmable gate arrays (FPGAs) can be custom synthesized to instantiate only those hardware units, such as multipliers and floating-point units, that an application requires to meet performance demands, thus minimizing soft-core size on the FPGA. Conjoining processors, meaning to share hardware units among two or more processors, can further reduce soft-core size, leaving more resources for other circuits such as custom coprocessors. Using Xilinx MicroBlaze coprocessors and standard embedded system benchmarks, we show that conjoining two processors can provide 16% processor size reductions on average, with less than 1% cycle count overhead. We introduce an efficient dynamic-programming-based exploration method to find the best custom instantiation of hardware units, considering both standalone and conjoined options, for soft-core processors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.